More specifically, they’re borrowing the more mathematical meaning of variables, where if you say x equals 5, you can’t later say x is 6, and where a statement like “x = x + 1” is nonsense. Using “let” means you’re setting the value once and that’s what it’s going to remain as long as it exists, while “var” variables can be changed later. Functional languages, which are usually made by very math-y people, will often protest the way programmers use operators by saying that =
is strictly for equality and variable assignment is :=
instead of ==
and =
in most C-style languages.
- 0 Posts
- 10 Comments
chaos@beehaw.orgto Linux@lemmy.ml•Why Vim Is More than Just an Editor – Vim Language, Motions, and Modes Explained5·2 months agoIt’s very good for navigating and editing text quickly, and fantastic for situations like “I need to do the same thing 100 times” with things like macros. Coders are frequently opening a big, complex file, jumping around it a lot, changing big and small parts of it, and doing repetitive tasks. For something more like writing out thoughts for an email, editing them slightly, then being done with that text forever, there aren’t as many advantages, you’re spending most of your time in “insert” mode which is effectively “normal text editor that people are used to” mode. That said, it’s one of those things where when you do get used to it and start to enjoy it instead of being frustrated by how different it is, you start wanting it wherever you have to type anything.
chaos@beehaw.orgto Programmer Humor@programming.dev•This will be *really* funny, until you remember 99% of current super hyped AI stuff is running on Python2·2 months agoLove a language that doesn’t care if you’re using inputs to get outputs or using outputs to get inputs
chaos@beehaw.orgto Linux@lemmy.ml•Retro, vaguely windows-95-looking linux distro that's actually usable and people like it?5·2 months agoI think you’re thinking of SerenityOS (although it isn’t actually a Linux):
chaos@beehaw.orgto Linux@lemmy.ml•Linux Patches Would Allow RISC-V To Use A 64K Page Size59·7 months agoBack in the olden days, if you wrote a program, you were punching machine codes into a punch card and they were being fed into the computer and sent directly to the CPU. The machine was effectively yours while your program ran, then you (or more likely, someone who worked for your company or university) noted your final results, things would be reset, and the next stack of cards would go in.
Once computers got fast enough, though, it was possible to have a program replace the computer operator, an “operating system”, and it could even interleave execution of programs to basically run more than one at the same time. However, now the programs had to share resources, they couldn’t just have the whole computer to themselves. The OS helped manage that, a program now had to ask for memory and the OS would track what was free and what was in use, as well as interleaving programs to take turns running on the CPU. But if a program messed up and wrote to memory that didn’t belong to it, it could screw up someone else’s execution and bring the whole thing crashing down. And in some systems, programs were given a turn to run and then were supposed to return control to the OS after a bit, but it was basically an honor system, and the problem with that is likely clear.
Hardware and OS software added features to enforce more order. OSes got more power, and help from the hardware to wield it. Now instead of asking politely to give back control, the hardware would enforce limits, forcing control back to the OS periodically. And when it came to memory, the OS no longer handed out addresses matching the RAM for the program to use directly, instead it could hand out virtual addresses, with the OS tracking every relationship between the virtual address and the real location of the data, and the hardware providing Memory Management Units that can do things like store tables and do the translation from virtual to physical on its own, and return control to the OS if it doesn’t know.
This allows things like swapping, where a part of memory that isn’t being used can be taken out of RAM and written to disk instead. If the program tries to read an address that was swapped out, the hardware catches that it’s a virtual address that it doesn’t have a mapping for, wrenches control from the program, and instead runs the code that the OS registered for handling memory. The OS can see that this address has been swapped out, swap it back in to real RAM, tell the hardware where it now is, and then control returns to the program. The program’s none the wiser that its data wasn’t there a moment ago, and it all works. If a program messes up and tries to write to an address it doesn’t have, it doesn’t go through because there’s no mapping to a physical address, and the OS can instead tell the program “you have done very bad and unless you were prepared for this, you should probably end yourself” without any harm to others.
Memory is handed out to programs in chunks called “pages”, and the hardware has support for certain page size(s). How big they should be is a matter of tradeoffs; since pages are indivisible, pages that are too big will result in a lot of wasted space (if a program needs 1025 bytes on a 1024-byte page size system, it’ll need 2 pages even though that second page is going to be almost entirely empty), but lots of small pages mean the translation tables have to be bigger to track where everything is, resulting in more overhead.
This is starting to reach the edges of my knowledge, but I believe what this is describing is that RISC-V chips and ARM chips have the ability for the OS to say to the hardware “let’s use bigger pages than normal, up to 64k”, and the Linux kernel is getting enhancements to actually use this functionality, which can come with performance improvements. The MMU can store fewer entries and rely on the OS less, doing more work directly, for example.
chaos@beehaw.orgto Free and Open Source Software@beehaw.org•Is there FOSS apps like curtail that can lossless compress video files?2·9 months ago“Lossless” has a specific meaning, that you haven’t lost any data, perceptible or not. The original can be recreated down to the exact 1s and 0s. “Lossy” compression generally means “data is lost but it’s worth it and still does the job” which is what it sounds like you’re looking for.
With images, sometimes if technology has advanced, you can find ways to apply even more compression without any more data loss, but that’s less common in video. People can choose to keep raw photos with all the information that the sensor got when the photo was taken, but a “raw” uncompressed video would be preposterously huge, so video codecs have to throw out a lot more data than photo formats do. It’s fine because videos keep moving, you don’t stare at a single frame for more than a fraction of a second anyway. But that doesn’t leave much room for improvement without throwing out even more, and going from one lossy algorithm to another has the downside of the new algorithm not knowing what’s “good” visual data from the original and what’s just compression noise from the first lossy algorithm, so it will attempt to preserve junk while also adding its own. You can always give it a try and see what happens, of course, but there are limits before it starts looking glitchy and bad.
chaos@beehaw.orgto Free and Open Source Software@beehaw.org•TiddlyWiki: An Open Source Alternative to Notion or Obsidian5·11 months agoI know TiddlyWiki quite well but have only poked at Logseq, so maybe it’s more similar to this than I think, but TiddlyWiki is almost entirely implemented in itself. There’s a very small core that’s JavaScript but most of it is implemented as wiki objects (they call them “tiddlers,” yes, really) and almost everything you interact with can be tweaked, overridden, or imitated. There’s almost nothing that “the system” can do but you can’t. It’s idiosyncratic, kind of its own little universe to be learned and concepts to be understood, but if you do it’s insanely flexible.
Dig deep enough, and you’ll discover that it’s not a weird little wiki — it’s a tiny, self-contained object database and web frontend framework that they have used to make a weird little wiki, but you can use it for pretty much anything else you want, either on top of the wiki or tearing it down to build your own thing. I’ve used it to make a prediction tracker for a podcast I follow, I’ve made my own todo list app in it, and I made a Super Bowl prop bet game for friends to play that used to be spreadsheet-based. For me, it’s the perfect “I just want to knock something together as a simple web app” tool.
And it has the fun party trick (this used to be the whole point of it but I’d argue it has moved beyond this now) that your entire wiki can be exported to a single HTML file that contains the entire fully functional app, even allowing people to make their own edits and save a new copy of the HTML file with new contents. If running a small web server isn’t an issue, that’s the easiest way to do it because saving is automatic and everything is centralized, otherwise you need to jump through some hoops to get your web browser to allow writing to the HTML file on disk or just save new copies every time.
chaos@beehaw.orgto Free and Open Source Software@beehaw.org•TiddlyWiki: An Open Source Alternative to Notion or Obsidian6·11 months agoIf you run the Node.js version, that’s all handled for you. It’s only if you want to do the party trick of keeping it all in a single HTML file that you need to worry about a plugin or anything like that. And even then, the server version exports to a standalone HTML file with one or two clicks.
Edit to add: it’s the only substantial Node package I’ve ever seen with zero dependencies. Very lightweight and simple to run.
chaos@beehaw.orgto Free and Open Source Software@beehaw.org•Any nonlinear noting apps like LogSeq/Anytype/Obsidian that does not use Electron?1·2 years agoI use TiddlyWiki for, well, a bunch of my projects, but primarily for my task management. You can use it as a single HTML file, which contains the entire wiki, your data, its own code, all of it, and of course use it in any browser you like. Saving changes is a bit of a pain until you find a browser extension or some other way of enabling more seamless editing than re-saving the edited wiki as another single HTML file, but there are many solutions to that as described on their site above.
The way I use it, which is more technical but also logistically simpler, is by running their very minimal Node.JS server which you can just visit and use in any browser which takes care of saving and syncing entirely.
The thing I like about TiddlyWiki is that although on its surface it’s a quirky little wiki with a fun party trick of fitting into an HTML file, what it actually is is a self-contained lightweight object database with a simple yet powerful query language and miniature front-end web development environment which they have used to implement a quirky little wiki. Each “article” is an object that is taggable and has key/value data, and “widgets” can be used in the text to edit and display that data, pulling from the “database” using filters. You can use it to make simple web apps for yourself and they come together very quickly once you know what you’re doing, and the entire thing is a demonstration of a complex web app that is also possible. The wiki’s implemented entirely using those same tools, and everything is open for you to tweak and edit to your liking.
I moved a Super Bowl guessing/fake gambling game that I run from a form and spreadsheet to a TiddlyWiki and now I can share an online dashboard that live updates for everyone and it was decently easy to make and works really well. With my task manager, I recently decided to add a feature where I can set an “agenda” value on any task, and they all show up in one place, so I could set it as “Boss” and then quickly see everything I wanted to bring up in our next 1 on 1 meeting. It took just a few minutes to add the text box to anything that gets tagged “Task” and then make another page that collected them all and displayed them in sections.
Computers only have one language and one data type. Everything else is a construct, which we can build up into a beautiful thing: a mathematics that exists in the real world instead of the pure realm of axioms and symbols, and because it’s purely our own creation and not the universe’s, we know it from the fundamentals and don’t have to struggle with all the unknowns of physics, which presents us with very different, more mysterious mathematical objects to interact with instead.